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Abstract
The star product is the basic tool used in the phase-space formulation of quantum
mechanics. We find a differential form of the star product for a class of
s-parametrized SU(2) Stratonovich–Weyl symbols which appear in the phase-
space representation of spin-like systems. The limit of large spin is considered
and the asymptotic form of the differential operator defining the star product is
obtained.

PACS numbers: 02.40.Gh, 02.20.−a, 03.65.Vf

1. Introduction

Since the seminal paper of Wigner [1], the phase-space methods have been successfully
applied in different branches of quantum mechanics (see, for example, [2, 3]). The phase-
space representation allows us to reformulate standard quantum mechanics on the classical
language of phase spaces and functions defined on them [4], providing a very useful insight
into quantum–classical correspondence in non-relativistic quantum mechanics. According to
the Moyal’s formulation of quantum mechanics, both states and observables are considered as
functions on a given phase space, in such a way that average values are computed as in classical
statistical mechanics: by integrating over the phase space of some quasi-distribution function
with the Weyl symbol of a corresponding operator. The axiomatic approach to the phase-
space formulation of quantum mechanics was developed by Stratonovich [5]. Nowadays this
approach is known as ‘the Stratonovich–Weyl correspondence’. According to this approach,
we associate each operator f̂ with its symbol f (�), a c-number function defined in the
corresponding phase space. The cornerstone of the Stratonovich–Weyl correspondence is a
specific symbol calculus, the so-called star (or twisted) product, which associates the product
of two operators f̂1f̂2 with an (associative) star product f1(�) ∗ f2(�). This star product
allows us to replace the standard manipulations with operators in the Hilbert space by a
differential (or integral) operator acting on the product of Weyl’s symbols. On the other hand,
the introduction of an associative but non-commutative star product to the algebra of classical
1 Address for correspondence: CUALTOS, Enrique Diaz de Leon, S/N, Lagos de Moreno, Jal., Mexico.
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observables leads to a specific quantization procedure (quantization by deformation) [6], now
applied in M-physics [7]. Obviously, the (invertible) map f̂ → f (�) (and, correspondingly,
the form of the star product) depends on the ordering rules of functions of noncommutative
operators. This can be taken into account by introducing an additional index, s, which specifies
a certain operator ordering, such that f̂ → f (s)(�).

The star product can be represented in differential and integral forms. Although a general
expression for the integral representation of the star product is easy to obtain, it is not very
useful for performing calculations (except the simplest case of the Heisenberg–Weyl group).
In this sense the differential form of the star product is more convenient. Both integral and
differential representations of the star product for the Heisenberg–Weyl group have been
extensively explored since Moyal’s paper [4]. The case of the SU(2) group has not been
explored to the same extent. In this paper we find an exact differential form of the star product
for the spin-like systems and discuss the quasiclassical limit for large spin. In section 2 we give
a short introduction to the principal mathematical ideas of this paper. In section 3 we briefly
discuss the Stratonovich–Weyl mapping for the spin-like systems. In section 4 we obtain
the differential form of the star product for the family of s-parametrized Stratonovich–Weyl
symbols and discuss the result, giving an example in section 5. In section 6 the limit for large
spin is considered and the asymptotic form of the differential operator defining the star product
is obtained.

2. A mathematical overview

In the phase-space formulation of quantum mechanics in the flat q–p(α–α∗) space a
family of s-parametrized quasi-distribution functions W(s)

ρ (α) (related to different ordering
of the position and momentum operators) naturally appears [8, 9]. These quasiprobability
distributions are built as mean values of the operator kernel which is the Fourier transform of
the (ordered) displacement operator from the Heisenberg–Weyl group representation [9],

W(s)
ρ (α) = Tr(ŵs(α)ρ) (1)

ŵs(α) = 1

π

∫
d2ξ D(ξ) exp[ξ ∗α − ξα∗ + s|ξ |2/2], (2)

where

D(ξ) = exp(ξa† − ξ ∗a),

α = (q + ip)/
√

2 (h̄ = 1) and ρ is the system density matrix. The values 0, +1, −1 of the
parameter s correspond to the Wigner W -function, the Glauber–Sudarshan P function and the
Husimi Q function. In the same way as (1) the s-parametrized Weyl symbol of an arbitrary
operator f̂ is introduced:

W
(s)
f (α) = Tr(ŵs(α)f̂ ).

The corresponding star product is defined as [4, 10, 11],

W
(s)
f (α) ∗ W(s)

g (α) = exp

[
− s

2
(∂(f )

α ∂
(g)
α∗ + ∂

(f )
α∗ ∂(g)

α )

]
× exp[ 1

2 (∂
(f )
α∗ ∂(g)

α − ∂(f )
α ∂

(g)
α∗ )]W(s)

f (α)W(s)
g (α). (3)

In addition to the Heisenberg–Weyl case, the Moyal quantization programme has been realized
in the spin-like systems possessing SU(2) group symmetry. The phase-space description of
spin systems was initiated by Stratonovich [5], Beresin [12] and Agarwal [13] (see also [14–19],
where different types of the quasiprobability distribution function on the sphere (θ, φ) ∈ S2
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have been discussed). Recently, the Moyal quantization scheme has been generalized
for quantum systems possessing a (connected and finite-dimensional) group of dynamical
symmetry [20] and a simple algorithm for constructing the (s-parametrized) Stratonovich–
Weyl such as kernels ŵs(�) (as a function defined on the ‘classical’ phase-space X, � ∈ X)
was proposed. The general rules to associate to each operator f̂ acting on a Hilbert space,
a function W

(s)
f (s-parametrized symbol of f̂ ) defined on the phase space, are given by the

‘Stratonovich–Weyl correspondence’ [5, 17, 20]

W
(s)
f (�) = Tr(ŵs(�)f̂ ). (4)

The star product of two Stratonovich–Weyl symbols is determined by the condition

W
(s1)
f ∗ W(s2)

g = W
(s)
fg (5)

for any two operators f̂ , ĝ. From the Stratonovich–Weyl postulates and the above definition
the following expression (integral representation) for the star product is obtained [17, 20]:

W
(s)
fg = Tr(ŵs(�)f̂ ĝ) =

∫
X

∫
X

K(s,s1,s2)(�, �1, �2)W
(s)
f (�1)W

(s)
g (�2) dµ(�1) dµ(�2) (6)

where dµ(�) is the invariant measure on X and K(s,s1,s2)(�, �1, �2) is the kernel defined as

K(s,s1,s2)(�, �1, �2) = Tr[ŵs(�)ŵs1(�1)ŵs2(�2)]. (7)

The kernel (7) has, in general, a quite complicated form. In the case of the Heisenberg–Weyl
group a differential form of the star product (6) was obtained by Moyal for the case of the
Wigner mapping, and later generalized to an arbitrary ordering [10,11]. The differential form
of the star product allows us to introduce the so-called Moyal brackets

{W(s1)
f , W(s2)

g }M = W
(s1)
f ∗ W(s2)

g − W(s2)
g ∗ W

(s1)
f ,

and thus, write down a differential evolution equation for quasi-distribution functions,

i∂tW
(s)
ρ = {W(s1)

H , W(s2)
ρ }M, (8)

where H is the system Hamiltonian.
In the classical limit, h̄ → 0, the Moyal brackets (8) in the flat-space case turns to the

Poisson brackets (on the p–q phase space) according to
1

ih̄
{W(s1)

H , W(s2)
ρ }M = {W(s1)

H , W(s2)
ρ }P + O(h̄).

A similar situation can be expected from the Moyal brackets for spin-like systems, where the
inverse dimension of representation plays the role of the expansion parameter.

It is worth noting that structures similar to (6) and (7) naturally arise [21] in the tomographic
representation of quantum mechanics [22].

3. The Stratonovich–Weyl correspondence for spin systems

The s-parametrized Stratonovich–Weyl kernel ŵs(θ, φ) for systems possessing the SU(2)

dynamical symmetry group is introduced according to [5, 17, 20, 23]

ŵs(θ, φ) = 2
√

π√
2S + 1

2S∑
L=0

L∑
M=−L

(CSS
SS,L0)

−sY ∗
LM(θ, φ)T̂

(S)
LM = ŵ†

s (θ, φ), (9)

where YLM(θ, φ) are the spherical harmonics and T̂
(S)
LM are the irreducible tensor operators [24]

which form an orthogonal operator basis in the space of (2S + 1) × (2S + 1) matrices and are
defined as

T̂
(S)
LM =

√
2L + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,LM |S, m′〉〈S, m|. (10)
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Here CSm′
Sm,LM are the Clebsch–Gordan coefficients which couple two representations of spin S

and L (0 � L � 2S) to a total spin S. The kernel ŵs(θ, φ) is normalized according to

Tr ŵs(θ, φ) = 1,
2S + 1

4π

∫
S2

dµ(�) ŵs(θ, φ) = I, (11)

where

dµ(�) = 2S + 1

4π
d� = 2S + 1

4π
sin θ dθ dφ

is the invariant measure on the sphere.
The s-parametrized family of SU(2) quasi-distribution functions (see [17] for review) are

defined as follows:

W(s)
ρ (θ, φ) = Tr(ρŵs(θ, φ)), (12)

where ρ is the system density matrix. As well as in the Heisenberg–Weyl case, the value
s = 0 corresponds to the Stratonovich–Weyl function, meanwhile s = ±1 leads to the Beresin
contravariant P -symbol and covariant Q-symbol correspondingly.

The (s-parametrized) Stratonovich–Weyl symbols of the operator f̂ (4)

W
(s)
f (θ, φ) = Tr(f̂ ŵs(θ, φ)), (13)

are covariant under rotations and provide the overlap relation

2S + 1

4π

∫
S2

d� W(s)
g (θ, φ)W

(−s)
f (θ, φ) = Tr(ĝf̂ ). (14)

The operator f̂ can be reconstructed from its symbol W
(s)
f (θ, φ) (13) through the following

relation:

f̂ =2S + 1

4π

∫
S2

d� ŵ−s(θ, φ)W
(s)
f (θ, φ). (15)

The kernel (7) defining the star product (6) takes the form

K(s,s1,s2)(θ, φ; θ1, φ1; θ2, φ2) =
(

2S + 1

4π

)2

Tr[ŵs(θ, φ)ŵs1(θ1, φ1)ŵs2(θ2, φ2)]. (16)

Unfortunately, this kernel has quite a complicated form and, thus, is not convenient for practical
use.

4. A differential form for the star product

To find the differential form of the star product (5), i.e. to define a differential operator
L̂fg(θ, φ), such that

W
(s)
fg = W

(s1)
f ∗ W(s2)

g = L̂
(s)
fg(θ, φ)[W(s1)

f W(s2)
g ], (17)

we make use of the reconstruction relation (15) for the product f̂ ĝ,

f̂ ĝ=2S + 1

4π

∫
S2

d� ŵ−s(θ, φ)W
(s)
fg (θ, φ), (18)

and then express W
(s)
fg (θ, φ) in the form (17). (It worth noting that the explicit expression (16)

is not very suitable for calculations.)
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Let us consider two operators f̂ and ĝ from the 2S + 1-dimensional representation of the
universal enveloping algebra of su(2). We represent both operators as series on the irreducible
tensor operators T̂

(S)
lk (10)

f̂ =
2S∑
l=0

l∑
k=−l

flkT̂
(S)
lk , ĝ =

2S∑
l=0

l∑
k=−l

glkT̂
(S)
lk . (19)

The degree of non-linearity (on the generators of the su(2) algebra) of the operators (19),
deg f̂ , deg ĝ is defined by the maximum value of l, such that flk �= 0, glk �= 0. It is easy to
observe that the (s-parametrized) Stratonovich–Weyl symbols of the operators f̂ and ĝ take
the form

W
(s)
f (θ, φ) = 2

√
π√

2S + 1

∑
l,k

(CSS
SS,L0)

−sflkYlk(θ, φ),

W(s)
g (θ, φ) = 2

√
π√

2S + 1

∑
l,k

(CSS
SS,L0)

−sglkYlk(θ, φ).

(20)

For the product f̂ ĝ we have

f̂ ĝ =
2S∑

l1=0

l1∑
k1=−l1

2S∑
l2=0

l2∑
k2=−l2

fl1k1gl2k2 T̂
(S)
l1k1

T̂
(S)
l2k2

. (21)

The product of two irreducible tensor operators can be expressed as a linear form on irreducible
tensor operators [24],

T̂
(S)
l1k1

T̂
(S)
l2k2

=
√

(2l1 + 1)(2l2 + 1)
∑
L,M

(−1)2S+LCLM
l1k1,l2k2

{
l1 l2 L

S S S

}
T̂

(S)
LM, (22)

where
{

l1 l2 L

S S S

}
are 6j -symbols. We use the following representation (which can be

obtained by comparing equations 9.2.1 (5) and 8.2.1 (4) from [24]) of 6j -symbols in terms of
expansion on the Clebsch–Gordan coefficients,{

l1 l2 L

S S S

}
= (−1)2S+l1

√
(2l1 + 1)

F (l2)F (l1)

F (L)

∑
j

ajb
l2
j l1

C
l1j

l2j,L0, (23)

where

aj = (−1)j

j !(2S + j + 1)!
, b

l2
j l1

=
[

(l2 + j)!(l1 + j)!

(l2 − j)!(l1 − j)!

]1/2

, (24)

and

F(L) =
√

(2S + L + 1)!(2S − L)!. (25)

Substituting (22) and (23) into (21) we get

f̂ ĝ =
∑
l1,k1

∑
l2,k2

∑
L,M

∑
j

(−1)−l1fl1k1gl2k2ajb
L
jl

×
√

(2l1 + 1)(2L + 1)

2l2 + 1

F(l2)F (l1)

F (L)
C

l2k2
LM,l1−k1

C
l2j

L0,l1j
T̂

(S)
LM, (26)

where we have used the following transformation properties of the Clebsch–Gordan
coefficients:

CLM
l1k1,l2k2

= (−1)l1−k1

√
2L + 1

2l2 + 1
C

l2k2
LM,l1−k1

, C
l1j

l2j,L0 = (−1)L

√
2l1 + 1

2l2 + 1
C

l2j

L0,l1j
. (27)
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Using the integral representation [24] for a product of two Clebsch–Gordan coefficients in
terms of the Wigner D-function,

C
l2j

L0,l1j
C

l2k2
LM,l1−k1

= 2l2 + 1

8π2

∫
dV DL

M0(φ, θ, ψ)D
l1
−k1j

(φ, θ, ψ)D
l2∗
k2j

(φ, θ, ψ), (28)

where dV = dφ d�, and relations

DL
M0(φ, θ, ψ) =

√
4π

2L + 1
Y ∗

LM(θ, φ),

D
l1
−k1j

(φ, θ, ψ) = (−1)k1

√
4π

2l1 + 1

√
(l1 − j)!

(l1 + j)!
(S+)jYl1k1(θ, φ),

D
l2∗
k2j

(φ, θ, ψ) =
√

4π

2l2 + 1

√
(l2 − j)!

(l2 + j)!
(S−)jYl2k2(θ, φ),

(29)

where

S± = ie∓iψ

(
± cot θ

∂

∂ψ
+ i

∂

∂θ
∓ 1

sin θ

∂

∂φ

)
, (30)

S±DL
mm′(φ, θ, ψ) = −

√
L(L + 1)CLm′±1

Lm,1±1D
L
mm′±1(φ, θ, ψ), (31)

are contravariant components of the angular momentum operator in the rotating frame [24],
we obtain from (26)

f̂ ĝ =
∑
l1,k1

∑
l2,k2

∑
L,M

∑
j

fl1k1gl2k2

aj√
π

F(l2)F (l1)

F (L)
T̂

(S)
LM

×
∫

dV Y ∗
LM(θ, φ)(S+)jYl1k1(θ, φ)(S−)jYl2k2(θ, φ). (32)

Now we note that the function F(L) (25) depends on the combination L(L + 1) rather than on
L itself and thus, we can write

F(L)DL
MM ′(φ, θ, ψ) = F̃ (J 2)DL

MM ′(φ, θ, ψ), (33)

where F̃ (J 2) is some function (whose explicit form is not needed for concrete calculations)
of the Casimir operator J 2,

J 2 = −
[

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

(
∂2

∂φ2
− 2 cos θ

∂2

∂φ∂ψ
+

∂2

∂ψ2

)]
, (34)

[J 2, S±] = 0, (35)

such that J 2DL
MM ′(φ, θ, ψ) = L(L + 1)DL

MM ′(φ, θ, ψ). Taking into account (20) and the
relation

CSS
SS,L0 =

√
(2S + 1)!(2S)!

F(L)
, (36)

we rewrite equation (32) in the following form:

f̂ ĝ = 2NS

2S + 1

∑
j

aj

∫
dV [F̃ s−1(J 2)ŵ−s1(θ, φ)](S+)j

× [F̃ 1−s1(J 2)W
(s2)
f (θ, φ)](S−)j [F̃ 1−s2(J 2)W(s3)

g (θ, φ)], (37)

where

NS =
√

2S + 1[(2S + 1)!(2S)!](s1+s2−s)/2 =
√

2S + 1F s1+s2−s(0).
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Integrating by parts in (37) we get

f̂ ĝ = 2NS

2S + 1

∑
j

aj

∫
dV ŵ−s(θ, φ)F̃ s−1(J 2)((S+)j

× [F̃ 1−s1(J 2)W
(s1)
f (θ, φ)](S−)j [F̃ 1−s2(J 2)W(s2)

g (θ, φ)]). (38)

Comparing (38) with (18) and (17) we obtain for the operator L̂fg(θ, φ), defining the star
product, the following expression:

L̂
(s)
fg(θ, φ) = NS

∑
j

aj

∫
dψ

2π
F̃ s−1(J 2)[((S+)j F̃ 1−s1(J 2))f ⊗ ((S−)j F̃ 1−s2(J 2))g], (39)

where the operators with subscript ‘f ’ act only on the W
(s1)
f (θ, φ), the operators with subscript

‘g’ act only on the W(s2)
g (θ, φ), whereas the external operator F̃ s−1(J 2) acts on the whole

product. After integration over the angle ψ we can rewrite equation (39) as

L̂
(s)
fg(θ, φ) = NS

∑
j

aj F̃
s−1(L2)[(S+(j)F̃ 1−s1(L2))f ⊗ (S−(j)F̃ 1−s2(L2))g], (40)

where L2 is the Casimir operator on the sphere

L2 = −
[

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]
,

L2YL,M(θ, φ) = L(L + 1)YL,M(θ, φ),

(41)

such that

F̃ (L2)YL,M(θ, φ) = F(L)YL,M(θ, φ), (42)

and the function F(L) is defined in (25). The symbolic powers S±(j) have been introduced
in (40) according to

S±j = e∓ijψS±(j), (43)

such that

S±(j) =
j−1∏
k=0

(
k cot θ − ∂

∂θ
∓ i

sin θ

∂

∂φ

)
. (44)

It follows from (31) and (44) that

S±(j)W
(s)
f (θ, φ) = 0, j > deg f̂ . (45)

The number of terms in the sum (40) is defined by the degree of non-linearity of the operators
f̂ and ĝ (19), i.e. j = 0, 1, . . . , jmax; jmax = min(deg f̂ , deg ĝ). On the other hand, we can
formally sum over ‘j ’ in equation (39) obtaining another representation for L̂

(s)
fg(θ, φ),

L̂
(s)
fg(θ, φ) = NS

∫
dψ

2π
F̃ s−1(J 2)σ (S+

f ⊗ S−
g )(F̃ 1−s1(J 2))f ⊗ (F̃ 1−s2(J 2))g (46)

where the function σ(z) is defined as

σ(z) =
∑

j

(−1)j

j !(2S + j + 1)!
zj = 1

zS+1/2
J2S+1(2

√
z), (47)

and Jn(x) is the Bessel function.
Equations (40) and (46) are the main result of this paper. It is worth noting that although

the operator function F̃ (L2) has explicitly entered into (40) and (46), the property (33) is
sufficient to determine the action of L̂fg(θ, φ) on the product of any pair of symbols W

(s1)
f and

W(s2)
g .
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One can observe from (40) and (46) that the star product acquires the simplest form for
the Beresin P -symbol, Pf (θ, φ) = W

(s=1)
f (θ, φ),

Pfg(θ, φ) = (2S + 1)!
∑

j

aj (S
+(j)Pf (θ, φ))(S−(j)Pg(θ, φ)),

where aj is defined in (24). For the Q-symbol, Qf (θ, φ) = W
(s=−1)
f (θ, φ) and the

Stratonovich–Wigner W -symbol, Wf (θ, φ) = W
(s=0)
f (θ, φ), we have correspondingly

Qfg(θ, φ) = 1

(2S)!

∑
j

aj F̃
−2(L2)(S+(j)F̃ 2(L2)Qf (θ, φ))(S−(j)F̃ 2(L2)Qg(θ, φ)),

Wfg(θ, φ) =
√

2S + 1
∑

j

aj F̃
−1(L2)(S+(j)F̃ (L2)Wf (θ, φ))(S−(j)F̃ (L2)Wg(θ, φ)).

Also, various mixed relations are possible, for example, we can compute the Stratonovich–
Wigner symbol Wfg(θ, φ) starting from Q-symbols Qf (θ, φ) and Qg(θ, φ):

Wfg(θ, φ) =
√

2S + 1

(2S + 1)!(2S)!

∑
j

aj F̃
−1(L2)(S+(j)F̃ 2(L2)Qf (θ, φ))(S−(j)F̃ 2(L2)Qg(θ, φ)).

5. Example

To show how the expression (40) works we calculate the symbol for the operator S+S−,
where S+, S−, Sz are generators of the 2S + 1-dimensional representation of the su(2) algebra
(S+ ∼ T11, S− ∼ T1−1, Sz ∼ T10). First of all we note that

W
(s)
Sz

(θ, φ) =
(

S

S + 1

)−s/2√
S(S + 1) cos θ,

W
(s)
S± (θ, φ) =

(
S

S + 1

)−s/2√
S(S + 1) sin θ e±iϕ.

(48)

Due to the property (45) only two terms (j = 0, 1) contribute to the sum in (40). Taking into
account that

W
(s)
Sz,±(θ, φ) ∼ Y1m(θ, φ), m = 0, ±1,

and (according to (42))

F̃ (L2)Y1m(θ, φ) = F(1)Y1m(θ, φ),

we have

W
(s1)
S+

∗s W
(s2)
S− = NSF

2−s1−s2(1)F̃ s−1(L2)

[
1

(2S + 1)!
WS+WS− − 1

(2S + 2)!
S(1)

+ WS+S
(1)
− WS−

]
,

(49)

where

S±(1) = − ∂

∂θ
∓ i

sin θ

∂

∂φ
, (50)

and we introduced the s-ordered star product ∗s according to

W
(s1)
f ∗s W (s2)

g = L̂
(s)
fg(W

(s1)
f W(s2)

g ).
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Substituting (48) into (49) we obtain after some algebra

W
(s1)
S+

∗s W
(s2)
S− =

(
S

S + 1

)−s/2
F−s(1)(2S + 2)!

4
√

2S + 1
F̃ s−1(L2)

×
[

4S

3
+ 2 cos θ −

(
cos2 θ − 1

3

)
(2S + 3)

]
.

Because of

cos2 θ − 1
3 ∼ Y20(θ, φ), cos θ ∼ Y10(θ, φ),

we get

W
(s1)
S+

∗s W
(s2)
S− =

(
S

S + 1

)−s/2
F−s(1)(2S + 2)!

4
√

2S + 1

[
4S

3
F s−1(0)

+ 2F s−1(1) cos θ − (2S + 3)F s−1(2)(cos2 θ − 1
3 )

]
, (51)

where

F(2) =
√

(2S − 2)!(2S + 3)!, F (1) =
√

(2S − 1)!(2S + 2)!,

F (0) =
√

(2S)!(2S + 1)!.

Here we note that because of s − 1 � 0, the last term in equation (51) equals zero in the case
of spin one-half, S = 1/2. Finally we obtain (for S � 1)

W
(s1)
S+

∗s W
(s2)
S− =

√
S(S + 1)

2

(
S

S + 1

)−s/2[4S

3

(
S

S + 1

)(s−1)/2

+ 2 cos θ −
(

cos2 θ − 1

3

)
(2S + 3)

(
2S + 3

2S − 1

)(s−1)/2]
. (52)

In the case when S = 1/2, the last term in the above equation is absent. On the other hand,
we have the equality

W
(s)
S+S− = W

(s)

L2 − W
(s)

S2
z

+ W
(s)
Sz

. (53)

Taking into account that

W
(s)

L2 = S(S + 1),

W
(s)

S2
z

= 1

2
(S(2S − 1))(1−s)/2((2S + 3)(S + 1))(1+s)/2

(
cos2 θ − 1

3

)
+

S(S + 1)

3
,

(note that in the case S = 1/2 we get W
(s)

S2
z

= 1/4) and substituting the above expressions
into (53) we obtain (52), which proves the relation

W
(s1)
S+

∗s W
(s2)
S− = W

(s)
S+S− .

6. Large spin limit

In the limit of large spin (S � 1), equations (40), (46) can be reduced to a rather simple
form. First of all we note (see appendix A) that the functions F̃ (J 2) (33) and σ(z) (47) can
be approximated as follows:

F̃ (J 2) ≈ (2S + 1)!√
2S + 1

exp

(
ε

2
J 2

)
,

σ (z) ≈ 1

(2S + 1)!
exp(−εz),

(54)
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where

ε = 1

2S + 1
� 1.

Then, the expression (46) for the operator L̂
(s)
fg(θ, φ) is approximated as

L̂
(s)
fg(θ, φ) ≈

∫
dψ

2π
exp

(
ε(s − 1)

2
J 2

)
exp(−εS+

f ⊗ S−
g )

× exp

(
ε(1 − s1)

2
J 2

f ⊗ 1g + 1f ⊗ ε(1 − s2)

2
J 2

g

)
. (55)

Taking into account that the action of J 2 on a product AB is defined as

J 2(AB) = [J 2
A ⊗ IB + IA ⊗ J 2

B − (S+
A ⊗ S−

B + S−
A ⊗ S+

B)](AB), (56)

and using the Campbell–Baker–Hausdorff formula

ef̂ eĝ = ef̂ +ĝ+ 1
2 [f̂ ,ĝ]+···, (57)

we get (see appendix B)

L̂
(s)
fg(θ, φ) ≈

∫
dψ

2π
exp

[
ε(s − s1)

2
J 2

f ⊗ Ig +
ε(s − s2)

2
If ⊗ J 2

g

+
ε

2
((1 − s)S−

f ⊗ S+
g − (1 + s)S+

f ⊗ S−
g )

]
. (58)

It is worth writing explicit expressions for some special cases. In the case when s = s1 = s2

equation (58) takes the form similar to that for the Heisenberg–Weyl group (3)

L̂
(s)
fg(θ, φ) ≈

∫
dψ

2π
exp

[
− sε

2
(S−

f ⊗ S+
g + S+

f ⊗ S−
g ) +

ε

2
(S−

f ⊗ S+
g − S+

f ⊗ S−
g )

]
,

in particular, one obtains

Pfg(θ, φ) =
∫

dψ

2π
exp[−εS+

f ⊗ S−
g ]Pf (θ, φ)Pg(θ, φ),

Qfg(θ, φ) =
∫

dψ

2π
exp[ε(S−

f ⊗ S+
g )]Qf (θ, φ)Qg(θ, φ),

Wfg(θ, φ) =
∫

dψ

2π
exp

[
ε

2
(S−

f ⊗ S+
g − S+

f ⊗ S−
g )

]
Wf (θ, φ)Wg(θ, φ).

On the other hand, from (40) we can obtain another approximation for the operator L̂
(s)
fg(θ, φ)

as a series on powers of ε,

L̂
(s)
fg(θ, φ) = If ⊗ Ig +

ε

2
[(s − s1)L2

f ⊗ Ig + (s − s2)If ⊗ L2
g

+ ((1 − s)S
−(1)
f ⊗ S+(1)

g − (1 + s)S
+(1)
f ⊗ S−(1)

g )] + O(ε2), (59)

where the operators S±(1) are defined in (50) and L2 is the Casimir operator on the sphere (41).

7. Conclusions

We have found an exact differential form for the star product for the family of s-parametrized
SU(2) Stratonovich–Weyl symbols. This result allows us to replace the operator algebra in
the Hilbert space of spin-like systems by differential calculus in the corresponding (classical)
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phase space. The explicit form (40), (46) of the star product (taken at s = s1 = s2) allows us
to write down the evolution equation (8) for the s-parametrized quasi-distribution functions,

i∂tW
(s)
ρ = M̂

(s)
Hρ(θ, φ)(W

(s)
H W(s)

ρ ), (60)

where

M̂
(s)
Hρ(θ, φ) = L̂

(s)
Hρ(θ, φ) − L̂

(s)
ρH (θ, φ)

denote the Moyal brackets operator. Equation (60) is the quantum Liouville equation for
quasi-distributions on the sphere.

In the limit case of large spin, we obtain from equation (59)

L̂
(s)
fg(θ, φ) ≈ If ⊗ Ig +

ε

2
((1 − s)S

−(1)
f ⊗ S+(1)

g − (1 + s)S
+(1)
f ⊗ S−(1)

g ),

which leads to the following approximate expression for the Moyal brackets operator:

M̂
(s)
Hρ(θ, φ) ≈ ε(S

−(1)
H ⊗ S+(1)

ρ − S
+(1)
H ⊗ S−(1)

ρ ).

We have

S
+(1)
f ⊗ S−(1)

g − S
−(1)
f ⊗ S+(1)

g = 2i

sin θ

(
∂

∂φf

⊗ ∂

∂θg

− ∂

∂θf

⊗ ∂

∂φg

)
= 2i{, }P ,

where {, }P denotes the Poisson brackets on the sphere, i.e. in the limit S � 1 the Moyal
brackets are reduced to the Poisson brackets. Finally, we obtain that the approximate evolution
equation for the s-parametrized quasi-distribution function W(s)

ρ takes the form

∂tW
(s)
ρ ≈ 2ε{W(s)

ρ , W
(s)
H }P , (61)

which is similar to the Heisenberg–Weyl case when the Moyal brackets reduce to the classical
Poisson bracket (in the flat space) in the limit h̄ → 0. Quantum corrections to the classical
evolution equation (61) can be obtained by further expansion of the star product (40) in a series
on the powers of ε. It is worth noting that the form of quantum corrections essentially depends
on the type of s-ordering of the quasidistribution function.

The first-order partial differential equation (61) can be solved (for example, by the method
of characteristics) and the evolution of the quasi-distribution function W(s)

ρ is given by

W(s)
ρ (θ0, φ0|t) ≈ W(s)

ρ (θ(θ0, φ0, t), φ(θ0, φ0, t)|t = 0),

where θ(θ0, φ0, t), φ(θ0, φ0, t) are the classical trajectories on the sphere generated by the
Hamiltonian H . Thus, in the quasiclassical limit of large spin, S � 1, the so-called ‘truncated
Wigner approach’ [25], in which each point of the quantum probability distribution evolves
along a classical trajectory, can be developed to give an approximate description of quantum
dynamics of spin-like systems.

Appendix A

We represent the function F(L) (25) in the following manner:

F(L) = (2S + 1)!√
2S + 1

[ L∏
k=0

1 + εk

1 − εk

] 1
2

= (2S + 1)!√
2S + 1

exp

[
1

2

L∑
k=0

ln
1 + εk

1 − εk

]
.

Expanding the logarithm
L∑

k=0

ln
1 + εk

1 − εk
=

L∑
k=0

∞∑
n=0

2(εk)2n+1

2n + 1
= 2

L∑
k=0

[
εk +

ε3

5
k3 + · · ·

]

= εL(L + 1) +
ε3

10
[L(L + 1)]2 . . .

we obtain equation (54).
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We approximate the function σ(z) as

σ(z) =
∞∑

j=0

(−z)j

j !(2S + j + 1)!
≈ 1

(2S + 1)!

∞∑
j=0

1

j !

( −z

2S + 1

)j

= 1

(2S + 1)!
exp

(
− z

2S + 1

)
.

Appendix B

To multiply exponentials in (55) using the Campbell–Baker–Hausdorff formula (57),

exp(εγJ 2) exp(−εS+ ⊗ S−) ≈ exp[εγ (J 2 ⊗ I + I ⊗ J 2

− (S+ ⊗ S− + S− ⊗ S+)) − εS+ ⊗ S−]

× exp

[
ε2γ

2
[S+ ⊗ S−, S− ⊗ S+] + O(ε3)

]
, (62)

with γ = (s1 − 1)/2, we note that

[S+ ⊗ S−, S− ⊗ S+] = S+S− ⊗ Sz − Sz ⊗ S−S+ + Sz ⊗ Sz, (63)

where

Sz = −i
∂

∂ψ
.

But the symbols W
(s)
f (θ, φ) do not depend on ψ , SzW

(s)
f (θ, φ) = 0, thus, the effect of action

of the exponential in (62) is negligible in our approximation.
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